Exploring the Limits of Graph Invariant- and Spectrum-Based Discrimination of (Sub)structures

نویسندگان

  • Christoph Rücker
  • Gerta Rücker
  • Markus Meringer
چکیده

The limits of a recently proposed computer method for finding all distinct substructures of a chemical structure are systematically explored within comprehensive graph samples which serve as supersets of the graphs corresponding to saturated hydrocarbons, both acyclic (up to n = 20) and (poly)cyclic (up to n = 10). Several pairs of smallest graphs and compounds are identified that cannot be distinguished using selected combinations of invariants such as combinations of Balaban's index J and graph matrix eigenvalues. As the most important result, it can now be stated that the computer program NIMSG, using J and distance eigenvalues, is safe within the domain of mono- through tetracyclic saturated hydrocarbon substructures up to n = 10 (oligocyclic decanes) and of all acyclic alkane substructures up to n = 19 (nonadecanes), i.e., it will not miss any of these substructures. For the regions surrounding this safe domain, upper limits are found for the numbers of substructures that may be lost in the worst case, and these are low. This taken together means that the computer program can be reasonably employed in chemistry whenever one is interested in finding the saturated hydrocarbon substructures. As to unsaturated and heteroatom containing substructures, there are reasons to conjecture that the method's resolving power for them is similar.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Relation between the Kirchhoff Index and Laplacian-Energy-Like Invariant of Graphs

Let G be a simple connected graph with n ≤ 2 vertices and m edges, and let μ1 ≥ μ2 ≥...≥μn-1 >μn=0 be its Laplacian eigenvalues. The Kirchhoff index and Laplacian-energy-like invariant (LEL) of graph G are defined as Kf(G)=nΣi=1n-1<...

متن کامل

A note on the bounds of Laplacian-energy-like-invariant

The Laplacian-energy-like of a simple connected graph G is defined as LEL:=LEL(G)=∑_(i=1)^n√(μ_i ), Where μ_1 (G)≥μ_2 (G)≥⋯≥μ_n (G)=0 are the Laplacian eigenvalues of the graph G. Some upper and lower bounds for LEL are presented in this note. Moreover, throughout this work, some results related to lower bound of spectral radius of graph are obtained using the term of ΔG as the num...

متن کامل

Some Results on Forgotten Topological Coindex

The forgotten topological coindex (also called Lanzhou index) is defined for a simple connected graph G as the sum of the terms du2+dv2 over all non-adjacent vertex pairs uv of G, where du denotes the degree of the vertex u in G. In this paper, we present some inequalit...

متن کامل

A New RSTB Invariant Image Template Matching Based on Log-Spectrum and Modified ICA

Template matching is a widely used technique in many of image processing and machine vision applications. In this paper we propose a new as well as a fast and reliable template matching algorithm which is invariant to Rotation, Scale, Translation and Brightness (RSTB) changes. For this purpose, we adopt the idea of ring projection transform (RPT) of image. In the proposed algorithm, two novel s...

متن کامل

Altan derivatives of a graph

Altan derivatives of polycyclic conjugated hydrocarbons were recently introduced and studied in theoretical organic chemistry. We now provide a generalization of the altan concept, applicable to any graph. Several earlier noticed topological properties of altan derivatives of polycyclic conjugated hydrocarbons are shown to be the properties of all altan derivatives of all graphs. Among these ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical information and computer sciences

دوره 42 3  شماره 

صفحات  -

تاریخ انتشار 2002